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Glossary: Graph theory and networks

For the following definitions of graph theory terms used in this review we

essentially follow the nomenclature of ref. 4 (see also [27] for additional

definitions and more detail). A Matlab toolbox allowing the calculation of these

and other graph theory measures is available at http://www.indiana.edu/

(cortex/connectivity.html.

Adjacency (connection) matrix: The adjacency matrix of a graph is a n!n

matrix with entries aijZ1 if node j connects to node i, and aijZ0 is there is no

connection from node j to node i.

Characteristic path length: The characteristic path length L (also called ‘path

length’ or ‘average shortest path’) is given by the global mean of the finite

entries of the distancematrix. In some cases, the median or the harmonic mean

can provide better estimates.[10]

Clustering coefficient: The clustering coefficient Ci of a node i is calculated as

the number of existing connections between the node’s neighbors divided by

all their possible connections. The clustering coefficient ranges between 0 and 1

and is typically averaged over all nodes of a graph to yield the graph’s

clustering coefficient C.[10]

Connectedness: A connected graph has only one component, that is a set of

nodes, for which every pair of nodes is joined by at least one path. A

disconnected graph has at least two components.

Cycle: A cycle is a path that links a node to itself.

Degree: The degree of a node is the sum of its incoming (afferent) and outgoing

(efferent) connections. The number of afferent and efferent connections is also

called the ‘in-degree’ and ‘out-degree’, respectively.

Distance: The distance between a source node j and a target node i is equal to

the length of the shortest path.

Distance matrix: The entries dij of the distance matrix correspond to the

distance between node j and i. If no path exists, dijZinfinity

Graph: Graphs are a set of n nodes (vertices, points, units) and k edges

(connections, arcs). Graphs may be undirected (all connections are symmetri-

cal) or directed. Because of the polarized nature of most neural connections, we

focus on directed graphs, also called digraphs.

Path:A path is an ordered sequence of distinct connections and nodes, linking a

source node j to a target node i. No connection or node is visited twice in a given

path. The length of a path is equal to the number of distinct connections.

Random graph: A graph with uniform connection probabilities and a binomial

degree distribution. All nodes have roughly the same degree (‘single-scale’).

Scale-free graph: Graph with a power-law degree distribution. ‘Scale-free’

means that degrees are not grouped around one characteristic average degree
Recent research has revealed general principles in the

structural and functional organization of complex net-

works which are shared by various natural, social and

technological systems. This review examines these

principles as applied to the organization, development

and function of complex brain networks. Specifically, we

examine the structural properties of large-scale anatom-

ical and functional brain networks and discuss how they

might arise in the course of network growth and

rewiring. Moreover, we examine the relationship

between the structural substrate of neuroanatomy and

more dynamic functional and effective connectivity

patterns that underlie human cognition. We suggest

that network analysis offers new fundamental insights

into global and integrative aspects of brain function,

including the origin of flexible and coherent cognitive

states within the neural architecture.

Complex networks, in a range of disciplines from biology
to physics, social sciences and informatics, have received
significant attention in recent years [1–3]. What can an
investigation of network structure and dynamics contrib-
ute to our understanding of brain and cognitive function?
In our review, we address this question by highlighting a
series of recent studies of complex brain networks and by
attempting to identify promising areas and questions for
future experimental and theoretical inquiry.

Networks are sets of nodes linked by connections,
mathematically described as GRAPHS ([4–6]; see Glossary).
The nodes and connections may represent persons and
their social relations [7], molecules and their interactions
[8], or web pages and hyperlinks [9], often numbering in
the thousands or millions. What makes such networks
complex is not only their size but also the interaction of
architecture (the network’s connection topology) and
dynamics (the behavior of the individual network nodes),
which gives rise to global states and ‘emergent’ behaviors.
Recent work across a broad spectrum of complex networks
has revealed common organizational principles (Box 1). In
many complex networks, the non-linear dynamics of
individual network components unfolds within network
topologies that are strikingly irregular, yet non-random.
In many networks, clusters of nodes segregate into tightly
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coupled neighborhoods, but maintain very short DISTANCES

among nodes across the entire network, giving rise to a
small world within the network [10]. The degree to which
individual nodes are connected forms a distribution that,
for many but not all networks, decays as a power law,
producing a SCALE-FREE architecture characterized by the
existence of highly connected nodes (hubs) [11].

What about the brain? Nervous systems are complex
networks par excellence, capable of generating and
integrating information from multiple external and
internal sources in real time. Within the neuroanatomical
substrate (structural connectivity), the non-linear
Review TRENDS in Cognitive Sciences Vol.8 No.9 September 2004
(scale), but can spread over a very wide range of values, often spanning several

orders of magnitude.
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Box 1. Complex networks: small-world and scale-free architectures

For any number of n nodes and k connections, a RANDOMGRAPH (see

Glossary) can be constructed by assigning connections between pairs

of nodes with uniform probability. For many years, random graphs

(Figure Ia) have served as a major class of models for describing the

topology of natural and technological networks. However, although

random graphs have yielded numerous and often surprising math-

ematical insights [5], they are probably only poor approximations of

the connectivity structure of most complex systems.

Classical experiments [71] first revealed the existence of a small

world in large social networks. Small worlds are characterized by the

prevalence of surprisingly short PATHS linking pairs of nodes within

very large networks. In a seminal paper [10], Watts and Strogatz

demonstrated the emergence of small world connectivity in networks

that combined ordered lattice-like connections with a small admixture

of random links (Figure Ib). Combining elements of order and

randomness, such networks were characterized by high degrees of

local clustering as well as short path lengths, properties shared by

genetic, metabolic, ecological and information networks [1–3].

The nodes in random graphs have approximately the same DEGREE

(number of connections). This homogeneous architecture generates a

normal (or Poisson) degree distribution. However, the degree

distributions of most natural and technological networks follow a

power law [11], with verymany nodes that have few connections and a

few nodes (hubs) that have very many connections (Figure Ic). This

inhomogeneous architecture lacks an intrinsic scale and is thus called

SCALE-FREE. Scale-free networks are surprisingly robust with respect

to random deletion of nodes, but are vulnerable to targeted attack on

heavily connected hubs [45], which often results in disintegration of

the network. A corollary of this finding is that the connection topology

of scale-free networks cannot be efficiently captured by random

sampling, as most nodes have few connections and hubs will tend to

be under-represented. Sampling is thus a crucial issue for determining

if brain networks have scale-free topology.

Systematic investigations of large-scale [32–35] and intermediate-

scale [35,36] structural cortical networks have revealed small-world

attributes, with path lengths that are close to those of equivalent

random networks but with significantly higher values for the

clustering coefficient. At the structural level, cortical networks

either do not appear to be scale-free [35] or exhibit scale-free

architectures with low maximum degrees [44], owing to saturation

effects in the number of synaptic connections, which prevent the

emergence of highly connected hubs. Instead, functional brain

networks exhibit power law degree distributions as well as small-

world attributes [52,62].

L=1.73 (0.06)
C=0.52 (0.05)

L=1.79 (0.04)
C=0.52 (0.04)

L=1.68 (0.01)
C=0.35 (0.03)

(a) (b) (c)

Figure I. Structure of random, small-world and scale-free networks. All networks have 24 nodes and 86 connections with nodes arranged on a circle. The characteristic

path length L and the clustering coefficient C are shown (mean and standard deviation for 100 examples in each case; only one example network is drawn). (a) Random

network. (b) Small-world network. Most connections are among neighboring nodes on the circle (dark blue), but some connections (light blue) go to distant nodes,

creating short-cuts across the network. (c) Scale-free network. Most of the 24 nodes have few connections to other nodes (red), but some nodes (black connections) are

linked to more than 12 other nodes. For comparison, an ideal lattice with 24 nodes and 86 connections has LZ1.96 and CZ0.64.
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dynamics of neurons and neuronal populations result in
patterns of statistical dependencies (functional connec-
tivity) and causal interactions (effective connectivity),
defining three major modalities of complex brain networks
(Box 2). Human cognition is associated with rapidly
changing and widely distributed neural activation pat-
terns, which involve numerous cortical and sub-cortical
regions activated in different combinations and contexts
[12–15]. Two major organizational principles of the
cerebral cortex are functional segregation and functional
integration [16–18], enabling the rapid extraction of
information and the generation of coherent brain states.
Which structural and functional principles of complex
networks promote functional segregation and functional
integration, or, in general, support the broad range and
flexibility of cognitive processes?

In this review we examine recent insights gained about
patterns of brain connectivity from the application of novel
quantitative computational tools and theoretical models to
empirical datasets. Whereas many studies of single
neuron networks have revealed their complex morphology
www.sciencedirect.com
and wiring [19], our focus is on the large-scale and
intermediate-scale networks of the cerebral cortex, allow-
ing us to examine links between neural organization and
cognition arising at the ‘systems’ level. We divide this
review into three parts, devoted in turn to the organiz-
ation (structure), development (growth) and function
(dynamics) of brain networks.
Structural organization of cortical networks

Most structural analyses of brain networks have been
carried out on datasets describing the large-scale connec-
tion patterns of the cerebral cortex of rat [20], cat [21,22],
and monkey [23] – structural connection data for the
human brain is largely missing [24]. These analyses have
revealed several organizational principles expressed
within structural brain networks. All studies confirmed
that cerebral cortical areas in mammalian brains are
neither completely connected with each other nor ran-
domly linked; instead, their interconnections show a
specific and intricate organization. Methodologically,
investigations have used either graph theoretical
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Box 2. Brain connectivity: structural, functional and effective

Anatomical connectivity is the set of physical or structural (synaptic)

connections linking neuronal units at a given time. Anatomical

connectivity data can range over multiple spatial scales, from local

circuits to large-scale networks of inter-regional pathways. Anatom-

ical connection patterns are relatively static at shorter time scales

(seconds to minutes), but can be dynamic at longer time scales

(hours to days); for example, during learning or development.

Functional connectivity [72] captures patterns of deviations from

statistical independence between distributed and often spatially

remote neuronal units, measuring their correlation/covariance,

spectral coherence or phase-locking. Functional connectivity is

time-dependent (hundreds of milliseconds) and ‘model-free’, that

is, it measures statistical interdependence (mutual information)

without explicit reference to causal effects. Different methodologies

for measuring brain activity will generally result in different

statistical estimates of functional connectivity [73].

Effective connectivity describes the set of causal effects of one

neural system over another [72]. Thus, unlike functional connec-

tivity, effective connectivity is not ‘model-free’, but requires the

specification of a causal model including structural parameters.

Experimentally, effective connectivity can be inferred through

perturbations, or through the observation of the temporal

ordering of neural events. Other measures, estimating causal

interactions can also be used (e.g. [52]).

Functional and effective connectivity are time-dependent. Statisti-

cal interactions between brain regions change rapidly reflecting the

participation of varying subsets of brain regions and pathways in

different cognitive tasks [12–15], behavioral or attentional states [65],

awareness [14], and changes within the structural substrate related

to learning [74]. Importantly, structural, functional and effective

connectivity are mutually interrelated. Clearly, structural connec-

tivity is a major constraint on the kinds of patterns of functional or

effective connectivity that can be generated in a network. Structural

inputs and outputs of a given cortical region, its connectional

fingerprint [28], are major determinants of its functional properties.

Conversely, functional interactions can contribute to the shaping of

the underlying anatomical substrate, either directly through activity

(covariance)-dependent synaptic modification, or, over longer time

scales, through affecting an organism’s perceptual, cognitive or

behavioral capabilities, and thus its adaptation and survival.
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approaches, or multivariate methods to extract statistical
structure by clustering or scaling techniques [25].

Structural contributions of individual areas and motifs

At the local level, simple statistical measures (‘network
participation indices’, [26]) can be used to characterize
inputs and outputs of individual areas. These measures
include an area’s IN-DEGREE and OUT-DEGREE, and its
‘transmission’ coefficient, defined as the relative number
of efferents to afferents. Such measures allow identifi-
cation of highly connected nodes (hubs) and provide an
initial functional characterization of areas as either
(mainly sending) ‘broadcasters’ or (mainly receiving)
‘integrators’ of signals. For macaque visual cortex [23],
the average efferent/afferent ratio is close to 1, with a
standard error of 0.4 [25], indicating that brain regions
tend to engage in cooperative (‘give-and-take’) infor-
mation-processing.

The ‘matching index’ captures the pairwise similarity of
areas in terms of their specific afferents and efferents from
other parts of the network [25,27]. One of the central
assumptions of systems neuroscience is that the func-
tional roles of brain regions are specified by their inputs
and outputs. In agreement with this concept, one finds
www.sciencedirect.com
that pairs of areas with high matching index also share
functional properties [25]. In general, the ‘connectional
fingerprint’ of a cortical area can serve as an indicator of
its functional contribution to the overall system [28].

On the next higher level of organization – neural
circuits linking small sets of connected brain areas – the
approach of motif analysis can be used to identify patterns
of local interconnections that occur with a significantly
higher frequency in real networks than in randomized
networks of the same size [29,30,31]. Biological and
technological networks contain several characteristic
motifs, such as ‘feedforward loops’ and ‘bi-parallel path-
ways’. A systematic analysis of motifs in brain networks
revealed a small number of characteristic motifs shared
among several examples of cortical networks (O. Sporns
and R. Kotter, in preparation), potentially indicating
common modes of information processing.

Large-scale connection patterns

Graph theoretical analysis of large-scale connection
patterns of cat and monkey has revealed characteristic
properties, several of which are shared across neural
systems and species (see also Box 1). All large-scale
cortical connection patterns (ADJACENCY MATRICES) exam-
ined so far exhibit small-world attributes with short PATH

LENGTHS and high CLUSTERING COEFFICIENTS [32–35]
(Figure 1a). These properties are also found in inter-
mediate-scale connection patterns generated by probabil-
istic connection rules, taking into account metric distance
between neuronal units [35,36]. This suggests that high
clustering and short path lengths can be found across
multiple spatial scales of cortical organization. The
quantitative analysis of structural connection patterns
using graph theory tools provides several insights into
the functioning of neural architectures. In-degree and
out-degree specify the amount of functional conver-
gence and divergence of a given region (see above),
whereas the clustering coefficient measures the degree
to which the area is part of a local collective of
functionally related regions. The path length between
two brain regions captures their potential ‘functional
proximity’. If no path exists, no functional interaction
can take place.

Various global connectivity features of cortical net-
works have been described and characterized with the
help of multivariate analysis techniques, such as multi-
dimensional scaling or hierarchical cluster analyses [25].
For example, streams of visual cortical areas have been
identified that are segregated functionally [37] as well as
in terms of their inputs, outputs and mutual interconnec-
tions [38]. Topological sequences of areas might provide
the layout for signaling pathways across cortical networks
[39]. Alternatively, hierarchies of cortices can be con-
structed, based on the laminar origin and termination
patterns of interconnections [23,40].

To identify the clusters which are indicated by the high
clustering coefficients of cortical networks, a compu-
tational approach based on evolutionary optimization
was proposed [32]. This stochastic optimization method
delineated a small number of distinctive clusters in global
cortical networks of cat and macaque [32] (e.g. Figure 1b)
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Figure 1. Small-world and scale-free structural and functional brain networks. (a) Characteristic path length and clustering coefficient for the large-scale connection matrix

(see Glossary) of the macaque visual cortex (red) (connection data from [23], results modified from [35]). For comparison, 10 000 examples of equivalent random and lattice

networks are also shown (blue). Note that the cortical matrix has a path length similar to that for random networks, but a much greater clustering coefficient. (b) Cluster

structure of cat corticocortical connectivity, based on [32] and visualized using Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). Bars indicate borders between nodes in

separate clusters. Cortical areas were arranged around a circle by evolutionary optimization, so that highly inter-linked areas were placed close to each other. The ordering

agrees with the functional and anatomical similarity of visual, auditory, somatosensory-motor and frontolimbic cortices. (c) A typical functional brain network extracted from

human fMRI data (from [52]). Nodes are colored according to degree (yellowZ1, greenZ2, redZ3, blueZ4, other coloursO4). (d) Degree distribution for two correlation

thresholds. The inset depicts the degree distribution for an equivalent random network (data from [52]).
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as well as primate prefrontal cortex [41]. The algorithm
could be steered to identify clusters that no longer
contained any known absent connections, and thus
produced maximally interconnected sets of areas. The
identified clusters largely coincided with functional
cortical subdivisions, consisting predominantly of visual,
auditory, somatosensory-motor, or frontolimbic areas [32].
On a finer scale, the clusters identified in the primate
visual system closely followed the previously proposed
dorsal and ventral visual streams, revealing their basis in
structural connectivity patterns.

In networks composed of multiple distributed clusters,
inter-cluster connections take on an important role. It can
be demonstrated that these connections occur most
frequently in all shortest paths linking areas with one
another [42]. Thus, inter-cluster connections can be of
particular importance for the structural stability and
efficient working of cortical networks. The degree of
www.sciencedirect.com
CONNECTEDNESS of neural structures can affect the func-
tional impact of local and remote network lesions [43], and
this property might also be an important factor for
inferring the function of individual regions from lesion-
induced performance changes. Indeed, the cortical net-
works of cat and macaque are vulnerable to the damage of
the few highly connected nodes [44] in a similar way that
scale-free networks react to the elimination of hubs [45].
Random lesions of areas, however, have a much smaller
impact on the characteristic path length.
Network growth and development

The physical structure of biological systems often reflects
their assembly and function. Brain networks are no
exception, containing structures that are shaped by evol-
ution, ontogenetic development, experience-dependent
refinement, and finally degradation as a result of brain
injury or disease.
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Box 3. Growing complex networks: local rules and global design

Local spatial growth rules.
To understand how various developmental factors affect functional

specializations of brain networks, it is helpful to consider biologically

inspired models based on known constraints of neural development.

Previous algorithms for the generation of random and scale-free

networks (see Box 1) constitute unlikely growth algorithms, as they

ignore the fact that cortical networks develop in space. Preferential

attachment [2], for instance, would establish links to hubs indepen-

dent of their distance. In biological networks, however, long-distance

connections are rare, in part because the concentration of diffusible

signaling and growth factors decays with distance. Accounting for this

constraint, a spatial growthmodel was presented [46] in which growth

starts with two nodes, and a new node is added at each step. The

establishment of connections from a new node u to one of the

existing nodes v depends on the distance d(u,v) between nodes,

that is, Pðu; vÞZb eKa dðu;vÞ: This spatial growth mechanism can

lead to networks with similar clustering coefficients and charac-

teristic path lengths as in cortical networks when growth limits are

present, such as extrinsic limits imposed by volume constraints.

Lower clustering results if the developing model network does not

reach the spatial borders and path lengths among areas increase

[47]. By comparison, a preferential attachment model might yield

similar global properties, but fails to generate multiple clusters, as

found in cortical networks.

.and global network design

Can local spatial growth rules yield the known corticocortical

topology? In addition to similar global properties, defined by

clustering coefficient and characteristic path length, the generated

networks also exhibit wiring properties similar to the macaque cortex,

whose network and wiring distribution is shown in Figure I. This

supports the idea that the likelihood of long-range connections among

cortical areas of the macaque decreases with distance [47]. Total

wiring length both in the cortical and spatially grown networks lies

between benchmark networks in which connections are randomly

chosen, and in which only the shortest-possible connections are

established. The (few) long-range connections existing in the

biological networks might constitute shortcuts, ensuring short

average paths with only few intermediate nodes. Thus, the minimiz-

ation of this property might compete with global wiring length

minimization. As a by-product, the short-distance preference for

inter-area connections during spatial growth can lead to optimal

component placement [75] without the need of a posteriori

optimization.
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Figure I. Connectivity and idealized wiring lengths of the macaque cortex. (a) Cortex with associated long-range connectivity among areas (based on Ref. [23]). The

connection matrix represents data of three different studies obtained from the CoCoMac database (http://cocomac.org/home.htm). Node positions were calculated by

surface coordinates using corresponding parcellation schemes within the Caret software (http://brainmap.wustl.edu/caret/). (b) Distribution of approximate fiber length

as calculated by the direct Euclidian distance between the average spatial positions of brain areas. Note that the layout of areas on the cortical sheet might impose limits

on the distribution of distances among areas. Nevertheless, the figure indicates that some cortical projections can reach considerable length. (Redrawn from [47].)
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Intuitively plausible growth mechanisms have been
proposed for the large classes of small-world [10] and
scale-free networks [11]. Such topological algorithms,
however, are not biologically realistic and do not represent
good models for the development of cortical networks
(Box 3). Alternative developmental algorithms were
proposed recently that acknowledge spatial constraints
in biological systems, while also yielding different types of
scale-free and small-world networks [46,47]. It will be an
important challenge to refine these computational models
by drawing on the wealth of data available from studies in
developmental neurobiology [48], to reproduce the specific
organization of cortical networks.

Especially intriguing is the role that experience might
play in network growth. Although the same complement of
connections appears to exist in different individuals of a
species, the density of specific cortical fiber pathways can
vary substantially between individual brains [49]. It is
currently not clear whether this variability is partly
attributable to activity-dependent processes. If so, it
might be described by recent approaches that couple
changes in connection topology to the dynamical evolution
of connection weights [50].
www.sciencedirect.com
Functional networks and neural dynamics

Scale-free functional brain networks

Dodel [51] developed a deterministic clustering method
that combines cross-correlations between fMRI signal
time courses, and elements of graph theory to reveal
brain functional connectivity. Image voxels form nodes of a
graph, and their temporal correlation matrix forms the
weight matrix of the edges between the nodes. Thus a
network can be implemented based entirely on fMRI data,
defining as ‘connected’ those voxels that are functionally
linked, that is correlated beyond a certain threshold rc. A
set of experiments examined the resulting functional
brain networks [52], obtained from human visual and
motor cortex during a finger-tapping task. Over a wide
range of threshold values rc the functional correlation
matrix resulted in clearly defined networks with charac-
teristic and robust properties (Figure 1c). Their degree
distribution (Figure 1d) and the probability of finding a
link versus metric distance both decay as a power law.
Their CHARACTERISTIC PATH LENGTH is short (similar to that of
equivalent random networks), although the clustering
coefficient is several orders of magnitude larger. Scaling
and small-world properties persisted across different

http://www.indiana.edu/(cortex/connectivity.html
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tasks and within different locations of the brain. In
contrast to other biological networks [53], the relative
independence of clustering and degree of individual nodes
in these examples of brain functional networks indicated
an absence of hierarchical organization.

Using correlations to derive functional brain networks
from fMRI datasets has several known limitations.
Transitivity in correlations could contribute to an artifac-
tual increase in the clustering coefficient, suggesting the
use of more stringent correlation measures such us partial
directed coherence (PDC, [54]). The use of PDC or other
measures of causality might allow the extraction and
analysis of effective networks (see Box 2) associated with
human cognitive function.

Relationship between structural connectivity and

functional dynamics

Neural dynamics unfolding within a structural substrate
gives rise to patterns of functional and effective connec-
tivity (Box 2). These patterns exhibit characteristic
features of segregation and integration, which can
quantitatively be captured using multivariate and hier-
archical information-theoretical measures [16,33,34].
Optimization analyses have demonstrated that a high
level of complexity (defined as the co-expression of
functional segregation and functional integration [16]) is
strongly associated with the emergence of small-world
attributes, high proportions of CYCLES and minimized
wiring length in structural connection patterns [33].
Such architectures also promote high levels of information
integration [55] and the formation of an integrated
‘dynamic core’, a potential neural correlate of higher
cognition and consciousness [56,57].

The relation of structural connectivity patterns to
resulting neuro-dynamical states has been investigated
in detailed computer simulations of cortical networks with
heterogeneous [58] and spatially patterned [36] connec-
tion topologies. Different connection topologies generated
different modes of neuronal dynamics [34,36]. Locally
clustered connections with a small admixture of long-
range connections exhibited robust small-world attributes
[35,36], while conserving wiring length, and gave rise to
functional connectivity of high complexity with spatially
and temporally highly organized patterns. These compu-
tational studies suggest the hypothesis that only specific
classes of connectivity patterns (structurally similar to
cortical networks) support short wiring, small-world
attributes, clustered architectures, high complexity, and
possibly metastable dynamical states [59], and an abun-
dance of dynamical transients [60].

A recent proposal suggests that the continual inte-
gration and redistribution of neuronal impulses represents
a critical branching process ([61]; see also [62,63]), giving
rise to sequences of propagating spikes forming neuronal
avalanches. In the critical regime, the branching par-
ameter expressing the ratio of descendant spikes from
ancestor spikes is found to be near unity, such that a
triggering event causes a long chain of spikes that neither
dies out quickly (subcriticality) nor grows explosively
(supercriticality). Slice preparations of rat cortex operate
at or near criticality, generating neuronal avalanches with
www.sciencedirect.com
a size distribution following a power law [61]. Importantly,
criticality is found to be associated with maximal
information transfer [61] and thus high efficacy of
neuronal information processing. The relationship
between criticality and complexity or specific structural
connection patterns is still unknown.

Within functional brain imaging, approaches such as
Structural Equation Modeling (SEM, [15,64,65]) or, more
recently, Dynamic Causal Modeling (DCM, [66]) have
successfully related brain activation patterns to a chan-
ging functional ‘load’ of structural connections. Despite
the relative scarcity of structural connection data for the
human brain, these approaches have great potential for
revealing distributed functional and effective networks
underlying human cognition.

Conclusion: links between complex networks and

cognition

Highly evolved neural structures like the mammalian
cerebral cortex are complex networks that share several
general principles of organization with other complex
interconnected systems. These principles reflect systema-
tic and global regularities in the structural interconnec-
tions and functional activations of brain areas. The work
reviewed in this article has suggested some emerging
links between network organization and cognition, illu-
minating the structural basis for the coexistence of
functional segregation (modularity) and functional inte-
gration, for the rapid generation and transfer of infor-
mation, and for the robustness of brain networks and their
failure following damage.

Small-world attributes and the occurrence of highly
clustered connection patterns appear to represent a
general organizational principle found throughout many
large-scale cortical networks. What are the potential
functional implications of this mode of connectivity? The
connectivity clusters found in cat and rhesus monkey
cortex tend to follow functional subdivisions of these
brains [32,38]. The groups of areas delineated by cluster-
ing are also broadly similar to clusters of semi-functional,
neuronographic interactions [67]. Thus, it appears that
structural clustering shapes at least some cortical acti-
vation patterns. Clustering implies short path lengths
between cluster elements. But path lengths between any
two cortical areas are already very short (typically, cortical
areas are connected directly or via just one or two
intermediate areas [32,33]), so it is not immediately
clear why direct connections between areas within a
cluster provide additional benefits. The answer may have
to do with the signal transformations that are carried out
by cortical areas. Although they might be helpful to
eliminate noise from irrelevant sources, too many inter-
mediate transformations might interfere with the
capacity of brain areas to cooperate on a specialized task
(an idea expressed in the context of consciousness [68]). In
addition, failures of edges or nodes within clusters can be
compensated for more easily, as nearby nodes share
similar (matching) afferent and efferent connections.

Apart from functional cooperation, clustering might
achieve three main purposes. First, the distributed cluster
structure of cortical systems is ideal for creating a balance
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Box 4. Questions for future research

† What are the best experimental approaches to generate large and

comprehensive connectional datasets for neural systems, especially

for the human brain?

† What is the time scale for changes in functional and effective

connectivity that underlie perceptual and cognitive processes?

† Are all cognitive processes carried out in distributed networks? Are

some cognitive processes carried out in more restricted networks,

whereas others recruit larger subsets?

† Does small-world connectivity reflect developmental and evol-

utionary processes designed to conserve or minimize physical

wiring, or does it confer other unique advantages for information

processing?

† What is the relationship between criticality, complexity and

information transfer?

† Is the brain optimized for robustness towards lesions, or is such

robustness the by-product of an efficient processing architecture?

† What is the role of hubs within scale-free functional brain

networks?

† How can scale-free functional networks arise from the structural

organization of cortical networks?
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between functional segregation and integration, resulting
in functional connectivity of high complexity [33], while
conserving wiring length. Second, the close association of
areas within clusters lends itself to efficient recurrent
processing. Closed feedback loops among areas are very
likely to occur, given the high frequency of reciprocal
connections [23,26,33] and abundance of short cycles [33]
in cortical systems. Finally, the clustered organization of
cortical networks might support synchronous processing
[47,69] or efficient information exchange [70], as demon-
strated in other types of small-world networks.

Currently, the links between complex networks and
cognition are still tentative and more such links are likely
to emerge as empirical and theoretical research pro-
gresses. Althoughmany questions remain open (see Box 4)
we anticipate that our future understanding of human
cognitive function will benefit from converging studies of
the connectivity pattern of the human brain and of
complex networks.
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